

Development Standards & Practices Used

● Circuit/coding simplicity. Keep everything neatly condensed.
● Pseudo code. Provide reasoning why certain lines are in place.
● Test individual components. Make sure each component works by testing them separately

from the rest of the circuit, then test again with two components connected, and so on.

Summary of Requirements

● Shutoff Valve
● Android Application
● Control Shutoff valve with Android Application
● Wifi connectivity through Arduino
● Complete project not exceeding $250

Applicable Courses from Iowa State University Curriculum
*Note: Courses that overlap across different majors are only listed once

New Skills/Knowledge acquired that was not taught in courses

● Machine Learning
● Embedded Systems
● Establishing communication between Android app and arduino
● Getting variables from a user’s system, such as their GPS location and timezone
● Some basic plumbing knowledge

1

SE CprE EE

CS 309 CprE 288 EE 201

CS 228 EE 230

CS 227 EE 333

CS 319 EE 456

CS 363

SE 329

● Background Processes in Android OS

Table of Contents
1 Introduction 3

1.1 ​Acknowledgement 3

1.2 ​Problem and Project Statement 4

1.3 ​Operational Environment 4

1.4 ​Requirements 4

1.5 ​Intended Users and Uses 4

1.6 ​Assumptions and Limitations 5

1.7 ​Expected End Product and Deliverables 5

Project Plan 5

2.1 Task Decomposition 5

2.2 Risks And Risk Management/Mitigation 6

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 7

2.4 Project Timeline/Schedule 7

2.5 Project Tracking Procedures 9

2.6 Personnel Effort Requirements 9

2.7 Other Resource Requirements 10

2.8 Financial Requirements 11

3 Design 11

3.1 Previous Work And Literature 11

3.2 ​Design Thinking 11

3.3 ​Proposed Design 12

3.4 Technology Considerations 12

3.5 Design Analysis 13

3.6 ​Development Process 13

3.7 ​Design Plan 14

2

4 Testing 15

4.1 ​Unit Testing 16

4.2 ​Interface Testing 16

4.3 ​Acceptance Testing 17

4.4 ​Results 17

5 Implementation 17

6 Closing Material 18

6.1 Conclusion 18

6.2 References 18

6.3 Appendices 18

List of figures/tables/symbols/definitions

1 Introduction 5

Acknowledgement 5

Problem and Project Statement 5

Operational Environment 5

Requirements 5

Intended Users and Uses 6

Assumptions and Limitations 6

Expected End Product and Deliverables 6

Project Plan 6

2.1 Task Decomposition 6

2.2 Risks And Risk Management/Mitigation 8

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8

2.4 Project Timeline/Schedule 8

3

2.5 Project Tracking Procedures 11

2.6 Personnel Effort Requirements 11

2.7 Other Resource Requirements 12

2.8 Financial Requirements 13

3 Design 13

3.1 Previous Work And Literature 13

Design Thinking 13

Proposed Design 14

3.5 Design Analysis 15

Development Process 15

Design Plan 16

4 Testing 17

Unit Testing 18

Interface Testing 18

Acceptance Testing 19

Results 19

5 Implementation 19

6 Closing Material 20

6.1 Conclusion 20

6.2 References 20

6.3 Appendices 20

1 Figures

2.1 - Task Decomposition 6

2.5 - Project Timeline 8

3.71 - Design Plan 14

3.72 - Design Options 14

2 Tables

2.6 - Effort Requirements 9

4

2.7 - Parts List 10

4.01 - Software Testing 15

4.02 - Hardware Testing 16

1 Introduction
1.1 A​CKNOWLEDGEMENT
We would like to thank Dr. Cheng Huang for being our advisor for this project. His proposal
provides an applicable, hands-on opportunity to combine hardware and software components into
an end product that can be utilized by many people today. We appreciate his insights and
dedication to keep us on track to produce an efficient and effective product.

1.2 P​ROBLEM​ ​AND​ P​ROJECT​ S​TATEMENT
For many homeowners and property managers, water damage is a significant concern and can be
an expensive problem to fix, with one of the most frequent reasons for flood damage being leaking
or burst pipes. Currently available market options to monitor and control water flow are too
expensive or lack additional functionality for most homeowners to consider purchasing. The goal
for this project is to develop a low-cost water shutoff valve with the ability to monitor water flow in
order to prevent and protect property against water damage for homeowners and property
managers. The product should be able to: measure the flow of water through the water line,
connect to the internet for real-time water control and monitoring, and provide smart features
such as text alerts and an automatic shutoff mode.

With this project, we hope to provide a means to prevent water damage, while keeping the
component cost of the product around $200. By being able to detect when abnormal water usage
occurs, our product will be able to alert the homeowner and shut off the valve to prevent further
damage. The shut-off valve would be a good preventative investment for homeowners, while also
being market competitive by being cheaper than other available options. We hope to deliver a
complete system with internet-connected hardware that can monitor water flow, shut off the water
valve, and can be controlled via a user friendly smartphone app that can also monitor the hardware
and control the water shutoff valve.

1.3 O​PERATIONAL​ E​NVIRONMENT
Our hardware components for the project will be installed by the main waterline for a building.
These areas can be damp and prone to dust. The inside component will be exposed to water. The
app would be expected to be used on most mobile devices in a place that has internet connection.

1.4 R​EQUIREMENTS

● Total hardware components should stay within a $200 goal
● Hardware should be able to be installed in a home or business setting
● Hardware should be able to monitor the flow of water through waterline and send the data

to be stored on a server
● Hardware should be able to shut off the flow of water through the waterline
● App should be able to communicate with the hardware to open and close the water valve

5

● App should allow users to view history of waterflow
● App should allow users to monitor current waterflow
● App should be responsive and easy to use
● App should allow users to list times when the valve should be automatically shut when

water is detected

1.5 I​NTENDED​ U​SERS​ ​AND​ U​SES
The intended users for this product are homeowners and other property owners. Water damage
can be expensive to repair and can cause structural damage to buildings. This product will supply
property owners with a cost-efficient way to prevent water damage and monitor water usage.
Depending on the most effective solution, the product will be able to be used by people with no or
limited plumbing knowledge.

1.6 A​SSUMPTIONS​ ​AND​ L​IMITATIONS
Assumptions:

● Users have access to a mobile device with internet connectivity
● Users have basic plumbing knowledge to install the valve by themselves
● Only one user can be logged into the account at once
● Users have internet connection for hardware to connect to
● Users have some basic knowledge of plumbing

Limitations:

● Product should cost less than $250
● Should be small enough to fit wherever the main water pipe is in the household
● Operates at common household voltages
● Depending on most effective solution, some knowledge of plumbing may be required

1.7 E​XPECTED​ E​ND​ P​RODUCT​ ​AND​ D​ELIVERABLES
Hardware System​ - internet connected water shutoff valve with waterflow connection. Multiple
options available with recommendations based on the user’s knowledge of plumbing. Delivered by
May 2021.

Mobile App​ - User friendly mobile application that allows for water flow monitoring and manually
shutting off water through the water valve. Delivered by May 2021.
Installation Guide​ - Manual for users to install the hardware system for the shutoff valve Delivered
by May 2021

2 Project Plan
2.1 T​ASK​ D​ECOMPOSITION
The following tasks will be done repeatedly until an acceptable solution is implemented:

I. Planning
a. Assigning Roles
b. Setting the Schedule

6

c. Ordering Necessary Hardware
II. Prototyping

a. Screen Sketches for Android Application
b. Diagrams for Hardware/Software Integration

III. Development
a. Android Application Programming
b. Assembling Hardware
c. Hardware/Software Integration

IV. Testing
a. Android JUnit testing
b. Android Mockito Testing
c. Controlled Environment Hardware Testing

7

Figure 2.1. Task Decomposition
V. User Feedback

a. Beta Release
b. Refactoring

2.2 R​ISKS​ A​ND​ R​ISK​ M​ANAGEMENT​/M​ITIGATION
Arduino Losing Internet Connection​- Users will be encouraged to connect their hardware to
the internet via an ethernet adapter.
App Crashing​- While impossible to completely avoid app crashes, there will be thorough testing to
ensure that the app functions as desired.
Software Compatibility​- We will test our app across several different devices to ensure that it is
compatible with all current Android devices.
Login Information Getting Compromised​- We will work to encrypt a user’s login credentials, as
well as adding two-factor authentication.
Short Circuiting​ - To prevent short circuiting, the hardware will be put under multiple tests to
ensure proper functionality.
Budget Cuts​ - There is not much that our group can do if funding is cut. In this case, we will be
forced to find an even cheaper solution.
Deadline Changes​ - Several schedule changes will be made to allow our team to meet the deadline
for this project.

2.3 P​ROJECT​ P​ROPOSED​ M​ILESTONES​, M​ETRICS​, ​AND​ E​VALUATION​ C​RITERIA

● Machine learning algorithm to detect unwanted water flow will classify with 80% accuracy;
the pattern recognition logic on water usage

● System sends data updates at 5 minute intervals with 90% accuracy.
● Application receives accurate data and updates charts and graphs.
● Application can communicate with hardware and hardware responds within a reasonable

timeframe (500 ms).
● Working hardware prototype is developed that can halt the flow of water within a

reasonable timeframe (500 ms).

2.4 P​ROJECT​ T​IMELINE​/S​CHEDULE

● A realistic, well-planned schedule is an essential component of every well-planned project
● Most scheduling errors occur as the result of either not properly identifying all of the

necessary activities (tasks and/or subtasks) or not properly estimating the amount of effort
required to correctly complete the activity

● A detailed schedule is needed as a part of the plan:
○ Start with a Gantt chart showing the tasks (that you developed in 2.1) and

associated subtasks versus the proposed project calendar. The Gantt chart shall be
referenced and summarized in the text.

○ Annotate the Gantt chart with when each project deliverable will be delivered
● Project schedule/Gantt chart can be adapted to Agile or Waterfall development model.

8

How we plan for the project to be completed in two semesters:

Figure 2.4. Project Timeline

9

2.5 P​ROJECT​ T​RACKING​ P​ROCEDURES
For this project, we will be using Git and Github to store our code and allow for multiple people to
implement different features. It will also allow us to keep track of changes and to allow for multiple
people to review code before finalizing updates.

We also plan on using Trello to keep people on task during our Agile sprints. This will allow us to
assign cards and tasks to different people so that we can keep track of our goals for each spring. It
will also allow us to monitor other people’s progress so that we can know about any delays.
We will also use Discord as our means to meet as a team. This will allow us to meet electronically
while allowing us to pin important conversations. It will also allow us to contact each other outside
of our meetings and alert us when our team members are trying to relay important information.

2.6 P​ERSONNEL​ E​FFORT​ R​EQUIREMENTS

Table 2.6. Effort Requirements

The first task we had to accomplish was researching which components we needed to buy in order
to complete the project. Our project needs to be accessible to most users, so it needs to be cheap
and easy to implement. We also want to see which components work the best, so we have ordered a
few different components for testing.

We needed to develop a design plan which will be our course of action over the next two semesters.
We will continue to revisit our plan and make changes as needed.

10

Task Effort Requirement (Person Hours)

Research Components 3

Develop Design Plan 30

Identify Use Cases and Entities 15

Develop Working Hardware Prototype 100

Develop Working Software application 100

Establish communication between hardware
and software

30

Software Testing 50

Improving Prototype and Alternative
Implementations

50

Feedback and Improvements 100

Total 478

The third task is to develop the use cases and entities for our project. This is to identify all of the
potential users for our project and all of the different components that are needed. Then, we will be
able to develop the app to be applicable to our users and to set up all of the different entities that
we will need.

The next three steps are for development. The hardware team will work on building a working
prototype. The software team will work on making a functioning application. Once the pieces are
working correctly, we can work on establishing communication between the hardware and the
software.

Over the course of the project, we will need to test the software and work out any bugs that we
encounter. This will be an ongoing process.

The hardware team will need to improve on the prototype. They will also need to test which
components are the most effective solution that is accessible to most users. We can then provide an
analysis of which pieces are cheaper and which pieces are better depending on the plumbing
knowledge of the users.

Over the course of the project, our client will be providing feedback that we will need to
implement. This might cause us to need to redesign our implementation.

2.7 O​THER​ R​ESOURCE​ R​EQUIREMENTS
Parts we will be using:

11

Device Part Name Cost

Water flow sensor G1/2 ​114991173 $6.02

ultrasonic sensor Excelity 3pcs Ultrasonic
Module HC-SR04 Distance
Sensor with 3pcs Mounting
Bracket for Arduino

$7.99

Electric rotating motor ​290-008 $19.99

Wifi module Serial Wireless WiFi
Transceiver Receiver Module

$12.98

Water ball valve, male, G1/4 Mini Ball Valve, Brass, Inline,
1-Piece, Pipe Size 1/4 in,
Connection Type FNPT x
MNPT

$8.65

Arduino Nano Mini Nano V3.0 ATmega328P
Microcontroller Board w/USB
Cable For Arduino

$13.99

Table 2.7. Parts List

For the application, we will need various software components including, but not limited to:
Android Studio, Spring Boot, Postman, MySQL, and a virtual machine to host our application.
Most, if not all, of these are available to us free of charge.

2.8 F​INANCIAL​ R​EQUIREMENTS
Our total budget is $500. To keep the end product affordable, our goal is to keep the design below
$250. A breakdown of the cost for each component can be viewed in the previous section.

3 Design

3.1 P​REVIOUS​ W​ORK​ A​ND​ L​ITERATURE
The Moen 900-002 Flo by Moen is an available market option that provides an app and a device to
manually shut off the flow of water in a home. It also will record the amount of water used. While
our product will function similarly to the Moen device, we are hoping to achieve the same end
result at about one third of the price for the consumer.

There are other similar products, but they all cost a minimum of $500.
This project will require us to learn some basic plumbing skills, and one of our group members
already has that knowledge that he learned for a previous project.

3.2 D​ESIGN​ T​HINKING
There are many things we had to define for this project, one of which is whom this product is for.
Most homeowners and other property owners would love to have a cheap way to prevent water
damage to their property. Since we are trying to make our project as widely available as possible,
we had to take into consideration that most people have a lack of knowledge in regards to
plumbing and piping. To make our product usable for the general public, it must be easy to
implement. If it requires installation into the piping of a home, this process should be doable by
most people when given detailed instructions.

When thinking about the users for this product, there were other needs we defined besides just
ease of installation. One need is that the product should be cheap. There are already current
solutions to this problem available, so we need to make sure that our product is competitively
viable by making it a cheaper alternative. Keeping this goal in mind is what drove some of our
design choices for what options were available for us. Another need that we defined is that the app
should be easy to use. The features of the app should be intuitive and the actions a user can take
should not be too complex. No one wants to read an instruction manual when figuring out how to
work an app. If the app is too frustrating to use, users will search for a better alternative.

During the ideate phase, we came up with two possible solutions for controlling the flow of water
in a property. One solution uses a sonic sensor and the other uses a waterflow sensor. Each of the
solutions has its own pros and cons. The sonic sensor would be easier to implement for a user, as it

12

can attach to the outside of a pipe. However, the sensor activates whenever the pipe vibrates, even
if the vibrating is not caused by water flow. The waterflow sensor is more accurate in this regard,
since it will only report data if water is sensed. However, it is more difficult to implement as it
requires access to the property’s piping. In the end, we decided we would try to implement both
solutions to compare and contrast the benefits of each solution.

For the software side of things, most of the ideate phase was dependent on which languages our
developers were most comfortable using. For the backend, both Spring and .NET Core frameworks
were considered for the app. Spring was eventually chosen for its use of java and availability of
packages and plugins to streamline development.

3.3 P​ROPOSED​ D​ESIGN
So far for the app, the backend has created an application that runs on local machines. It has a
successful connection to a MySQL database and can properly store and retrieve data. The controller
and service classes for the User entity have been created. The methods to create a user, get a user,
get a user’s username/email/phone number/password, get a list of all users, and update a user have
all been tested. All of these will be used so that a user can create an account for the application.
This will allow users to connect their water control device(s) to their account.

The backend still has to develop an entity for each water control device. Each device will be
associated with one user. This database relationship will also need to be set up to ensure a
many-to-one relationship between users and water control devices. Each device will also need to be
able to contain a schedule so that certain times of the day will automatically shut off water flow if
water is detected. All of this will be used to make sure that each device is registered and
communicates with one account. This will also satisfy the requirement of allowing the user to
create a schedule where the device will automatically stop any water flow if it is detected at certain
times.

The hardware will include an arduino, the device’s microcontroller, allowing the user to interact
with the hardware via phone app and for it to function autonomously. In order for the user to be
connected to the device, a wifi adapter will be incorporated. Currently, we are designing two
devices that will achieve the same goal. The first device will include a water flow sensor that will
record how long water has been flowing through the device and piping. If the sensor has been
tripped for an ‘x’ amount of time then the water piping will get shut off, until the user tells it
otherwise. Attached to this design will be a water control valve that will be switched off/on
accordingly. In order to control the valve, a rotating motor must be included into the design. The
control valve will also be integrated into the water piping system.

Make a reference to our design options figure 3.72 for both hardware and software.

3.4 Technology Considerations
As far as software is concerned, we chose to use Android Studio because it supports the Java
programming language. While this may limit the amount of users for the application, it is simply
easier to integrate all of our ideas in Android Studio. Our software developers are more familiar
with Android Studio than other app-development environments.

13

For the backend, we chose to use the Spring Framework since it is java based. It also provides many
built-in packages which will simplify many common implementations that we will need. It is also
widely used in industry, so it is good to become familiar with it for our project. It is also modular
and supports dependency injection, allowing for easier testing of entities in isolation.
During our initial designs we were considering what microprocessor we should use - what would be
cost effective, reasonable in size, powerful. We decided on the Arduino Nano as it has the same
capabilities as a regular Arduino - it is easy to program, however it is significantly smaller in size
allowing the design to be more compact. We also considered a Raspberry Pi, however that device is
bigger in size and we are not quite that familiar with programming those devices.

3.5 D​ESIGN​ A​NALYSIS
There are a few design choices. As already stated, we are planning two designs - the flow sensor
being our main design and the sonic sensor our secondary. For the flow sensor we are using a
specific part that will record data, and it comes with a threaded male component so it can be
integrated into a piping system. Upon further analysis, however, the thread spacing is not
standardized and will require a special adaptation so it can be converted to the standard spacing.
We will be getting in contact with the manufacturer of the part to inquire more details about the
threaded spacing. In the meantime, we will also look at other flow sensors that will not require a
special adaptation.

For the sonic sensor, right now we are testing out our current sensors to see if they can detect
vibrations in a flowing water pipe. If they work, then our next step would be figuring out a way to
stop water flow without integrating a part into the piping system, but, rather, onto its exterior.

3.6 D​EVELOPMENT​ P​ROCESS
We have decided on an Agile development process. This process calls for biweekly sprints and daily
stand-ups. This encourages us to work early on any deadlines we set for ourselves. It also gives us
many chances to communicate as a team to share any progress or challenges that we have
encountered. The biweekly sprints are also conducive to our biweekly meetings with our faculty
advisor and for the biweekly reports.

The Agile development process also allows us to implement any user feedback that we receive.
With each sprint, we can show our progress to our client and obtain their critiques. We can then
improve on anything that is not optimal or desirable.

14

3.7 D​ESIGN​ P​LAN

Figure 3.71. Design Plan

Above is the relationship diagram for the database. Entities are in squares, attributes are circles,
and relationships are diamonds. The primary key for each entity is underlined. The relationships
are that a User can control one or more devices, and a device must have a user. A device can have
multiple periods of time that it is in automatic mode. It will also have many points of data
recording the amount of water flow through the pipe at a given time. This is the current design
plan. More entities and attributes may be required as implementation continues.

Figure 3.72. Design Options

15

Our first design is the water flow sensor where it will include a sensor that will integrate into the
water piping system along with a control valve. The flow sensor will be a Hall Effect sensor, where
the water flow will push a hanging magnet up-horizontally creating a magnetic field that will
inform the user water is flowing. When the magnet is down, the sensor will indicate zero water
flow. The control valve will be a water ball valve, a device that opens and closes water flow, usually
operated manually by the user, however our design will require something more automatic. We will
add a rotating motor - connected to the arduino - that will be placed above the valve, and with
some added programming lines the user will be able to open and close the valve with the app or
automatically due to a tripped sensor.

The second design is the non-integrated sonic sensor. The idea is to create a device that will detect
water flow based on the vibrations within the water pipe with the ability to open and close the
valve automatically, or by the user interacting with the designed phone app. The trick is to find a
part, means, that will allow a standard user to control water flow without interfacing into the water
system directly, but preferably onto the exterior.

Both designs will incorporate a wifi adaptor, this will allow the user to interact with the device via
the phone app. We are also including some LEDs that will visually indicate the device’s current
mode, if water is flowing or not.

4 Testing
On the software side, we are going to use the following testing frameworks:

Table 4.01 Software Testing

16

Testing Framework Purpose of Tests

JUnit JUnit will allow us to test individual methods
for correctness. This will ensure that the logic
within each method is sound

Espresso Espresso tests will be used to test the interface
within the app itself. Upon clicking and
entering information, it will ensure that the
proper methods are called and the intended
results are received.

Mockito Mockito tests will be used to “mock” a
response from the hardware component while
it is still in development.

On the hardware side, we are looking to conduct the following methods of testing:

Table 4.02. Hardware Testing

4.1 U​NIT​ T​ESTING
Our application relies on properly storing the user’s water usage data, as well as properly
determining whether or not the water is running. Because of this, there will be a large focus on
accurately receiving information from the shutoff valve, and properly storing and fetching user
information.

We plan to test all entities within our database with both JUnit and Mockito tests. The mockito
tests will mock responses from the database to ensure that the methods are properly handling the
received data. The JUnit tests will ensure that the proper information is received from the backend.
The response received from the valve itself will be tested in isolation so that the app and the valve
itself are properly linked together. When the valve is on, the app must receive a signal from the
valve so that it can properly record water usage.

Another big part of our project revolves around determining when the water valve is on or off. We
must also determine what the water usage patterns are for our users, so that we can cater
suggestions to their needs. We plan to give the users a scheduling system so that they can input
necessary information, like what time they wake up or go to sleep, as well as giving them an option
to input a vacation, so that the water can stay off for an extended period. We will test this
extensively, and we plan to make improvements to the scheduler as we progress further.

4.2 I​NTERFACE​ T​ESTING
The user interface will be tested with Mockito, as well as hands on testing from our point of
contact. Mockito testing will allow us to monitor the methods that are called upon input of data
within the app itself. It will also allow us to see responses to inputs that are not intended so that we
can cut down on app crashes.

17

Testing Method Description

Controlled environment We will be testing our design on a homemade
water piping system, to see if it works before
we integrate into the real thing.

Voltage requirements for each component Based on the devices’ datasheet, we will
appropriately distribute the necessary voltage
to all of the components. First, we will test
each component individually, then again
collectively to get the voltage right.

Seeing if the sensor outputs data accurately We will need to run a few experiments for this.
The datasheet includes ways calibrating your
code for it to read accurate
measurements.

4.3 A​CCEPTANCE​ T​ESTING
We plan to keep our client in the loop as we continue development of this project. Through each
iteration, we will ask for feedback from our point of contact. We plan to improve our product
according to the feedback we receive until we reach a product that is able to satisfy not only the
client, but also ourselves.

We plan to give the client a hands on experience with the application and the hardware for this
project. We will welcome the client to attend our controlled environment tests so that he can
observe the behavior of the hardware and software.

We plan to demo the functionalities of our project early and often.

We will create a prototype. Once it works by our standards, we will send it along to our point of
contact for feedback.

Once controlled environment tests pass, we will move on to a real-world environment.

We will constantly get feedback and improve our product accordingly.

4.4 R​ESULTS
For our current results, we are just now starting to test our components. Right now, the flow sensor
male threaded component is not of standard sizing. We are currently in the process of determining
the correct size so we can order a converter for it to fit in the standard threaded size that can be
purchased at any hardware store.

The User entity has been tested on the web API, including all of the corresponding methods. A new
user can be created without conflicting with existing usernames. The list of all users is able to be
retrieved. One user can be retrieved from the database with a given username. A user’s password,
email, and phone number can be correctly retrieved as well. A user can also update their
information as well. The data also persists through termination of the code. Error checking must
still be implemented to guarantee that a valid email address and phone number are entered when
creating an account.

As we continue to implement different things, we will constantly be testing our design. We will
make sure each addition works in isolation, and fix any errors that we encounter. Once we are
confident that the component works by itself, we can start testing it with other components that
have been completed. Then we can identify any errors that occur and work to fix them.

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3.

18

6 Closing Material

6.1 C​ONCLUSION
Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals and indicate why this surpasses all other
possible solutions tested.

6.2 R​EFERENCES
List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

6.3 A​PPENDICES
Any additional information that would be helpful to the evaluation of your design document.
If you have any large graphs, tables, or similar data that does not directly pertain to the problem
but helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

19

