Smart Water Leak Shut Off Valve

sdmay21-11 https://sdmay21-11.sd.ece.iastate.edu/ Advisor & Client: Cheng Huang

Project Vision

• Problem Statement

• To develop a low-cost water shutoff valve with the ability to remotely monitor and control water flow.

• Purpose

• Mitigate unwanted water usage/leaks to prevent water damage.

• Main Goal

• Develop a mobile application and water value that can communicate with each other to control and report the flow of water through a pipe. The value can also be automatically shut off when abnormal water usage is detected.

Constraints

- Affordability
 - \circ Total cost of parts: <\$150
- Accessibility
 - Reasonable size for easy integration
 - Run on common household voltages
 - Some plumbing knowledge may be required
- Technology
 - Requires a WiFi connection
 - Mobile device for application

Conceptual Sketch

Functional Requirements

Hardware:

- Detect water flow through pipes
- Communicate with the software
- Change state of shutoff valve

Software:

- Notify user of unwanted water usage in real time
- Allow user to turn water off/on remotely
- Allow user to input schedule to automatically turn water off when detected

Qualitative Assessment

Sonic Sensor:

Considerations:

- Cost
- Effectiveness
- Compatibility
- Component specific risks

Flow Sensor:

Risk Management

- Short Circuiting: Waterproof enclosure
- Loss of Internet Connection: Notify user when wifi connection is lost
- Lost data: Backup data buffer
- Software Compatibility: Android only
- App Crashing: Thorough software testing, ability to report a crash

Schedule

Task	Time (weeks)	Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10	Wk 11	Wk 12	2 Wk 13	Wk 14	Winter Break
Initial Brainstorming/Creating a schedule	4															
Researching Sensors/Parts	2															
Research ESP8266 Wifi Module Compatability	3															
Hardware Design	2															
Software Design	2															
Finalizing Designs	1															
Ordering and Receiving Parts	4															
Frontend Basic UI Development	2															
Backend Setup and Login Screen	2															
Bug Testing	7+															
Hardware Individual Testing	2+															
Prototype Construction	2+															
Prototype Software Integration	2+															
Functional Requirement Testing	2+															

Development Framework

• We decided to use the Agile Framework

- Promotes communication between teammates
- Consistently receive feedback after each sprint
- Continuous implementation of features
- Git and Trello
 - Easily share progress
 - Review code before pushing to production
 - Update tasks and goals
- Discord as means of communication

Entity-Relationship Diagram

Screen Sketches

Hardware Prototype - Plumbing

Arduino Witi nano Module	Power Supply or Battery
	Water Solenoid
22 23 39	

Hardware Prototype - Non-Plumbing

Software Implementation Plan

Software Test Plan

• JUnit

• Test individual methods for correctness

• Narrow down bugs

• Espresso

• Used to test the interface of the app

• Mockito

 $\circ\,$ Test classes and reliance on other classes

Hardware Test Plan

- Data Detection
 - Test known signals through the arduino and wifi module
- Water flow Sensor
 - Alter flow of water through the sensor to ensure it's working properly
 - Leave a constant flow through the sensor for a prolonged time to ensure water is monitored properly over-time
- Valve Shut-off
 - Attach valve shut-off to ensure operation
 - Run operation continuously to determine if there is a breakdown after some number of turns

Completed Milestones

• Hardware

- Determining best flow sensor component
- Testing commercially available shut-off valves

• Software

- Basic GUI
- Running Spring Application with methods for user creation and authentication

Looking Forward

- Construct plumbing hardware prototype
- Hardware to Software communication
 - Sending and receiving signals
- Non-plumbing option
 - The option that allows the user to just attach the product to the pipe and valve
- Machine learning
 - Analyze existing water usage to automatically detect abnormal water flow

Individual Contributions

- Grace Wilkins Report Manager
 - Assessing and developing testing framework for hardware components
- Curt Kissel Frontend Software Developer
 - Front end software development, research, and testing
- Jihun Yoon Meeting Scribe
 - Front end software development, research, and testing
- Matthew Brandt Backend Software Developer/ Meeting Planner
 - Back end software development and testing
- Wolfgang Morton Hardware Engineer
 - Researching hardware components and design layout
- Cody Juracek Hardware Researcher
 - Researching hardware components and design layout

sdmay21-11 Smart Water Leak Shut Off Valve

Questions?

Use Case Diagram

sdmay21-11 Smart Water Leak Shut Off Valve

2nd Semester Schedule

Parts List

Device	Part Name	Cost				
Water flow sensor G1/2	114991173	\$6.02				
ultrasonic sensor	Excelity 3pcs Ultrasonic Module HC-SRo4 Distance Sensor with 3pcs Mounting Bracket for Arduino	\$ 7.99				
Electric rotating motor	290-008	\$19.99				
Wifi module	Serial Wireless WiFi Transceiver Receiver Module	\$12.98				
Water ball valve, male, G1/4	Mini Ball Valve, Brass, Inline, 1-Piece, Pipe Size 1/4 in, Connection Type FNPT x MNPT	\$8.6 5				
Arduino Nano	Mini Nano V3.0 ATmega328P Microcontroller Board w/USB Cable For Arduino	\$ 13.99				
Table 2.7. Parts List						